
Computational Analysis and Optimization of a

Chemical Vapor Deposition Reactor with

Large-Scale Computing

Andrew G. Salinger∗, Roger P. Pawlowski, John N. Shadid,
and Bart van Bloemen Waanders

Sandia National Laboratories†

October 22, 2003

Abstract

A computational analysis and optimization is presented for the
chemical vapor deposition (CVD) of silicon in a horizontal rotating
disk reactor. A three-dimensional reactor-scale model for the gas flow,
heat transfer, and mass transfer in a CVD reactor is coupled to a sim-
ple transport-limited surface reaction mechanism for the deposition of
epitaxial silicon from trichlorosilane. The model is solved to steady-
state for the deposition rate profile over the 8-inch silicon wafer using
an unstructured grid finite element method and a fully coupled in-
exact Newton method on parallel computers. Since a high degree of
spatial uniformity in the deposition rate is desired, parameter contin-
uation runs for 6 key operating parameters, including the inlet flow
rate and the rotation rate of the substrate, were performed and their
individual effects analyzed. Finally, optimization runs were performed
that located operating conditions that predict non-uniformity as low
as 0.1%.
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1 Introduction

In this paper we present an analysis and optimization of a three-
dimensional model of a horizontal chemical vapor deposition (CVD)
reactor used in the deposition of epitaxial silicon from trichlorosilane
(TCS). In particular, we study the influence of several key operating
parameters on the spatial uniformity of the thickness of a silicon film
deposited on an eight-inch diameter wafer. In this study we employ
computational techniques that map the nonlinear solution space with
continuation methods and also seek improved designs with automated
optimization methods. These computational methods require the ef-
ficient solution of large-scale 3D reacting flow simulations to provide
steady-state solution and calculations of a suitable optimization objec-
tive function. The ability to perform a thorough analysis on such a
detailed model of coupled flow, heat transfer, and mass transfer is the
result of a prolonged development effort in numerical methods for the
efficient solution of nonlinear partial differential equations (PDEs) on
parallel computers.

As the size of modern microelectronic components continue to be
reduced, more stable and improved reactor designs are needed to main-
tain required tolerances in deposition uniformity. The experimental
modifications of reactor configurations and manual control of operating
conditions becomes prohibitively expensive and time consuming. Fur-
thermore, small sample spaces in experimental data can mask trends
in operating parameters. Computer simulation can help to elucidate
these trends and allow designers to evaluate numerous reactor config-
urations.

It has been demonstrated that, for horizontal reactors, three-dimensional
models are typically required to capture critical physical phenomena.1–4

Therefore, high-performance computing with efficient numerical meth-
ods are required. There are now several demonstrations of such large-
scale simulation design studies in the literature.4–8 In this work we
demonstrate how sophisticated numerical methods for parallel com-
puters can enable detailed parameter studies and multi-parameter op-
timization simulations, even for three-dimensional models.

For a number of years, our research group has been among those
working on developing numerical algorithms and computer codes for
efficient, robust, and scalable solution of coupled nonlinear PDEs on
parallel computers. This work centers on the chemically reacting flow
code MPSalsa, which implements an unstructured grid finite element
method on distributed-memory parallel computers (details and refer-
ences in Section 3). MPSalsa uses a fully-coupled Newton algorithm
for the nonlinear solution, which relies on parallel preconditioned itera-
tive linear solvers (contained in the Aztec code9) to solve the resulting
linear system. The investment in calculating, storing, and solving the
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Jacobian matrix for Newton’s method leads to a robust steady-state
solution capability. The robustness and accuracy of a Newton solution
algorithm enables the use of sophisticated analysis algorithms such as
parameter continuation (performed here with the LOCA code10) and
optimization algorithms (using the Dakota framework11). Our previ-
ous work in CVD optimization includes preliminary results for GaAs
deposition in a low-pressure 3D reactor12 and for a 2D model of GaN
deposition.13,14

In this attempt at optimizing a 3D reactor for silicon epitaxy, we
have employed a simple transport limited mechanism for silicon de-
position. This choice has allowed us to explore the various transport
mechanisms thoroughly. Future studies will consider more complex
and rigorous chemistry mechanisms which are available.7,15–19

In Section 2 we present our model for the growth of silicon in a
horizontal CVD reactor. This includes a description of the reactor
geometry, the PDE model, and the operating parameters that will
be varied in the results sections. The numerical solution algorithms
are presented in Section 3. In Section 4 we present the solutions to
the model at some base operating conditions and then the result of
6 parameters studies, which detail the effect of these parameters on
the uniformity of silicon growth rates over the wafer surface. Finally
in Section 5, we present results from performing optimization runs on
those 6 parameters to achieve uniform silicon film growth over the
wafer.

2 Reactor Model

The simulations in this paper are for the deposition of silicon from
TCS in a horizontal CVD reactor with a rotating susceptor. The de-
scription of the reactor geometry and operation is described in Section
2.1. The partial differential equations and reaction mechanism that
approximate the real physics in the reactor are presented in Section
2.2. The boundary conditions, which include the 6 parameters varied
in the analysis, are presented in Section 2.3.

2.1 Problem Description

This paper models the chemical vapor deposition (CVD) of silicon on
a 200mm (8 inch) wafer from trichlorosilane (TCS) in a hydrogen, H2,
carrier gas. We model the three-dimensional reactor chamber, which
consists of a cylindrical main chamber, a rectangular inlet section, and
a rectangular outlet section. A view of the bottom of the reactor (with
the finite element discretization) is shown in Figure 1. Our model does
not include variations in the height of the reactor in the inlet and outlet
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Figure 1: The surface mesh for the bottom of the reactor is shown. The
flow enters at the left end and exits at the right. A thin, annular gap region
separates the rotating wafer and susceptor surfaces from the fixed part of
the reactor, which consist of the outer annular region and two rectangular
sections. The height of the reactor (not shown) is a constant.

sections, though these can exist in industrial reactors.7

A mixture of TCS and H2 enters the reactor at the left end and
exit through the right end. The susceptor and wafer surfaces (which
are treated identically in the model until post-processing) are held at a
fixed elevated temperature which promotes surface reactions producing
the deposition of a solid silicon thin film. These surfaces also rotate to
counter the effects of reactant depletion along the flow direction that
leads to a decreasing deposition rate through the length of the reactor.
Rotation also effects the flow profiles. Between the rotating susceptor
and the fixed part of the reactor is an annular gap, where a purge flow
of pure H2 can be injected to prevent silicon depositing underneath
the disk and interfering with the rotation mechanism. The rest of the
reactor is not actively heated or cooled, but the temperature of the top
of the reactor is set in the model for reasons detailed below.

The reactor is configured as follows. The wafer is centered at the
bottom of the reactor and has a radius of r < 10cm. Moving radially
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outward, there is the susceptor region and then a narrow annular gap
which forms the break between the rotating and fixed section of the
reactor. The rest of the cylindrical chamber extends out to r < 15cm.
The entrance and exit rectangular sections have widths of 15cm with
the entrance (on the left in Figure 1) having length of 16cm and the exit
of length 12cm. The height of the reactor (not shown in this figure) is a
uniform 3cm, so the pictured geometry and mesh are simply extruded
in the third dimension.

2.2 Mathematical Model

The governing equations and numerical methods summarized in this
section have been implemented in the MPSalsa computer code, de-
veloped at Sandia National Laboratories. More complete descrip-
tions of the code and capabilities can be found in the following ref-
erences.4,6,20–22

The fundamental conservation equations for momentum, heat, and
mass transfer are presented for a reacting flow application. The equa-
tions for fluid flow consist of the incompressible Navier-Stokes equa-
tions for a variable-density fluid and the continuity equation, which
express conservation of momentum and total mass. The steady-state
momentum equation takes the form:

ρ(u • ∇)u−∇ •T− ρg = 0, (1)

where u is the velocity vector, ρ is the mixture density, and g is the
gravity vector. T is the stress tensor for a Newtonian fluid:

T = −P I− 2
3
µ(∇ • u)I + µ[∇u +∇uT ] (2)

Here P is the isotropic hydrodynamic pressure, µ is the mixture vis-
cosity, and I is the unity tensor. The total mass balance is given by:

∇ • (ρu) = 0 (3)

The steady-state energy conservation equation is given as:

ρĈp(u • ∇)T = ∇ • (λ∇T )− S, (4)

where Ĉp is the mixture heat capacity and λ is the mixture thermal
conductivity. The last term on the right hand side S is the source
term due to the heat of reaction, which is negligible under the process
conditions in this system.

The species mass balance equation is solved for Ng-1 gas-phase
species:

ρ(u • ∇)Yk = ∇ • jk + Wkω̇k for k = 1, . . . , Ng-1, (5)
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where Yk is the mass fraction of the kth species, jk is the flux of species
k relative to the mass averaged velocity u and ω̇k is the molar rate of
production of species k from gas-phase reactions. The flux, jk, is based
on a mixture averaged diffusion coefficient formulation:

jk = −ρYk
Dkm

Xk
∇Xk −DT

k

∇T

T
(6)

Where Xk is the mole fraction of species k, Dkj is the mixture averaged
diffusion coefficient, and DT

k is the thermal diffusion coefficient. The
second term of equation (6) represents the effects of thermal diffusion,
or the Soret effect, which was found to have a significant effect for
this system. Finally, an algebraic constraint which enforces the sum
of the mass fractions to equal one, replaces one of the PDE species
conservation equations:

Ng∑

k=1

Yk = 1 for k = Ng (7)

The physical and transport properties in the above equations are
dependent on the thermodynamic pressure and the local temperature
and composition. These properties are computed using the Chemkin
library.23 These terms add considerable nonlinearity to the problem
and complexity in forming the residual equations. For example, the
density is computed from the ideal gas law,

ρ =
Po

RT

Ng∑

j=1

WjXj , (8)

where Po is the thermodynamic pressure, R is the gas constant, T is
the temperature, Xj is the mole fraction of the jth species, Wj is the
molecular weight of the jth species, and Ng is the number of gas-phase
species (which is 2 for the model in this paper).

2.3 Boundary Conditions and Operating Parame-
ters

In this section, the boundary conditions for our model will be de-
scribed, several of which are operating parameters and also variables
in the parameter and optimization studies. Four of the parameters
were chosen because they can be set fairly easily by a reactor operator
to alter performance. These are the reactor pressure P , the inlet flow
velocity Vi, the susceptor rotation rate Ω, and the purge flow rate Vp.
The temperature of the reactor top Tt is not easily computed, but is
varied primarily as a sensitivity study. However, its value can be al-
tered by reactor design and operation. The final parameter α, defined
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below, is a first order attempt to capture the effects of feeding the
reactant in other than a spatially uniform profile.

The only parameter varied in our study that is not a boundary con-
dition is the reactor pressure, which has a base value of P = 0.85atm
(approximately the atmospheric pressure in Albuquerque, New Mex-
ico).

In our model, the boundary conditions at the inlet to the reactor
(which is 15cm wide by 3cm high) specify a plug flow velocity, a con-
stant temperature, and the mole fractions of TCS and H2. The inlet
velocity is one of the parameters in the model and has a base value
of Vi = 30cm/sec. The inlet gas temperature is fixed at 300K. The
mole fraction of TCS at the inlet has an average value of 2.4%. In one
parameter study, the mole fraction of TCS is allowed to vary linearly
across the reactor width while always maintaining an average of 2.4%.
This is a first order model of the effects of spatially varying the inlet
concentration profiles. The parameter α controls this variation via the
following boundary condition for TCS mole fraction at the inlet:

XTCS = 2.4%
(

1.0 + α
y

W/2

)
. (9)

Here y is the crosswise dimension and the inlet covers −W/2 < y <
W/2, so to keep the mole fraction non-negative the parameter has a
range of −1.0 < α < 1.0. The base value is α = 0.0 which creates a
uniform inlet concentration.

The wafer and susceptor surfaces are treated identically in the
model except the post-processing of the deposition rate is only per-
formed on the wafer. These surfaces rotate (counterclockwise as viewed
from above), are held at a constant temperature of 1323K, and have the
surface deposition model turned on. In general the deposition model
can be very detailed,15 but we have used a simple transport-limited
mechanism, where TCS deposits silicon on the surface with a sticking
coefficient of unity. The surface Chemkin library24 is used to calculate
the flux of TCS and the deposition rate for post-processing. With no
gas phase reactions and this simple surface model, we just have two
species equations in the reactor, one for TCS and the other for the
hydrogen carrier gas.

The disk rotation is performed through velocity boundary condi-
tions and does not require any movement of the mesh, which is valid
with the assumption that any surface reactions equilibrate instanta-
neously compared to the rotation period. With a second assumption
that the growth run is long compared to the rotation period, the radial
deposition profile can be computed by averaging the azimuthal compo-
nent. The rotation rate Ω is one of the parameters in the model with
a base condition of Ω = 100 RPM.
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As mentioned in the previous section, our model allows for a purge
flow of pure H2 to enter through the small gap section between the
susceptor and the fixed reactor. This velocity of this flow is a parameter
with base value of Vp = 0.0 and Dankwerts boundary conditions are
used to specify the convective flux of the species while not constraining
the diffusive flux. Natural boundary conditions of no shear stress are
imposed on this surface for the momentum equation components that
are tangential to this surface.

The top of the main cylindrical chamber of the reactor (r < 15cm; z =
3cm) is held in our model at a uniform temperature. The value is a
parameter with a base value of Tt = 600K. The actual temperature at
the top of the reactor varies spatially and is a very complicated balance
between convection, conduction, and radiation, but whose calculation
is beyond the scope of this effort. While this parameter can not be
set in a typical reactor as readily as most of the other parameters, the
temperature of the reactor top can be influenced by reactor design.

The outlet of the reactor uses a pressure boundary condition on the
normal momentum equation that (weakly) sets the normal gradient
of the normal velocity to zero. All boundary conditions not specified
above are no-slip on tangential velocities, no-penetration on the normal
velocity, an adiabatic (no-flux) condition on the heat equation, and no-
flux condition on the species balances.

3 Solution Methods

The above system of 7 coupled PDEs (Equations 1, 3, 4, 5) and bound-
ary conditions are solved for unknowns ux, uy, uz, P , T , YTCS , and
YH2 with the MPSalsa code. MPSalsa uses a Galerkin/least-squares
finite element method22,25,26 to discretize these equations over the spa-
tial domain. This stabilization procedure allows for the use of equal
order linear FE basis functions for all variables while avoiding spu-
rious pressure oscillations for incompressible flows. The stabilization
also incorporates a streamline upwind Petrov-Galerkin (SUPG) type
methodology for controlling oscillations due to convective effects. An
additional important aspect of this stabilization procedure is that a
fully-implicit (for time dependent systems) and a direct-to-steady-
state solution procedure using Newton-Krylov methods can be imple-
mented.22 These robust non-linear and linear solvers are essential for
efficiently converging the continuation and optimization methods we
briefly describe in the following sections.

Th MPSalsa code is designed for general unstructured meshes in
2D and 3D, and runs on massively parallel computers. The results in
this paper were calculated for a mesh of 174080 (eight-node trilinear
hexahedral) elements and 182853 nodes, which corresponds to nearly
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Figure 2: A visualization of the partition of the 182853 node mesh for 100
processors is shown. The colored patches are elements (in the finite ele-
ment discretization) whose nodes are all owned by a given processor, while
the black strips are elements whose nodes are owned by multiple proces-
sors. Interprocessor communication is needed only across these elements for
performing the finite element method.

1.3 Million equations and unknowns. The mesh is produced using
the CUBIT software27 and decomposed for parallel solution using the
Chaco graph partitioning package.28,29 The partitioner assigns each
node to a processors in a way to evenly distribute the work load while
minimizing interprocessor communication. The decomposition of the
mesh for 100 processors is visualized in Figure 2. Finite elements with
all eight corner nodes owned by the same processor are given a color
unique to that processor. Elements broken over multiple processors
are colored black, and indicate the amount of information that need to
be communicated to perform a matrix fill or matrix-vector multiply.

3.1 Non-linear/Linear Solution Methods

A fully coupled inexact Newton’s method is used to robustly calculate
steady-state solutions. For the majority of the results in this paper,
the numerical Jacobian option was used. This option calculates the
dense Jacobian contribution for each finite element using first order
finite differencing. A much more efficient analytic Jacobian fill routine
exists yet does not include all the dependencies for this case where the
physical and transport properties depend on the local composition.
The Newton iteration to find the solution to the discretized equations,
f(x) = 0, is simply,

Jδ = −f(x), (10)
xnew = x + θδ.
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Here J is the Jacobian matrix (df/dx), δ is the solution update vec-
tor, and θ is a damping coefficient. This coefficient is bound by
10−4 ≤ θ ≤ 1.0 and set less then 1.0 only when a full Newton step
x + δ would result in a negative mole fraction. This damping of the
Newton step has been found to make Newton’s method more robust
for these problems. The iteration is terminated when each component
of the Newton update, δ, is small relative to the corresponding com-
ponent of the current solution, x. This large sparse linear system in
Eq.10 is solved approximately at each iteration using the Aztec pack-
age of parallel, preconditioned iterative solvers. We selected the ILU
preconditioner (with 0 or 1 level of overlap) and the GMRES solver
with no restarts.

The majority of the results in this paper were generated on 100 pro-
cessors of the Sandia-Intel TFlop machine, each of which is a 333MHz
Pentium Pro processor. For this problem, a typical matrix formula-
tion required 44 seconds for the inexact analytic Jacobian and 320
seconds to calculate the (nearly) exact finite difference numerical Ja-
cobian. A typical linear solve required 150 GMRES iterations and 220
seconds. Typically 4− 6 Newton iterations where required to converge
the nonlinear problem, though occasionally as many as 12 iterations
were needed for large jumps in parameter when the Newton update
was damped to insure the mass fractions stayed positive after every
iteration.

3.2 Continuation Methods

Parameter continuation methods have been implemented in MPSalsa
via the LOCA library.10,30 These methods find families of solutions
x(λ) which are parameterized by a system parameter λ. Continuation
algorithms have identified multiplicity in vertical CVD reactors.13,31,32

For this work, there was no solution multiplicity detected so natural
continuation with a first-order (Euler-Newton) predictor was sufficient
to follow solution branches. The predictor step requires on additional
linear solve to calculate the local tangent to the solution curve, z. This
tangent is then used, along with a user select parameter step size (∆λ)
to create a new solution vector as an initial guess for the next Newton
iteration,

Jz = − df
dλ

, (11)

xnew = x + ∆λz,

λnew = λ + ∆λ.

A complementary capability to the continuation algorithm is a lin-
ear stability analysis, which verifies that the computed steady-state
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solutions are stable to small perturbations. We have implemented this
capability in LOCA using the ARPACK library10,33 to approximate
the few rightmost eigenvalues of the linearized time dependent prob-
lem. This method has previously been described in detail34 and applied
to large buoyancy-driven flow problems.35

3.3 Optimization Methods

Optimization studies were performed using the Dakota framework,11

which provides a flexible interface between application codes and nu-
merous algorithms, such as optimization, uncertainty analysis, param-
eter estimation and sensitivity analysis. It also automates generating
gradients of the objective function with respect to parameters by finite
differences, when analytic gradients are not available, and implements
multi-level parallelism, where significant imporvements in computa-
tional efficiencies can be realized. In this study we exclusively used
a BFGS sequential quadratic programming algorithm (SQP). This is
a gradient-based algorithm and requires the complete nonlinear solu-
tion of the underlying PDE problem every time the parameters are
changed. (to investigate large design and state spaces, alternatives to
this approach are being developed.14,36) Based on previous experience,
the nonlinear solver tolerance was dropped 1 order of magnitude over
continuation runs to reduce noise in objective function, particularly in
numerical gradient calculations.

The post-processing of the deposition rate profile warrants a quick
discussion. The deposition rate on the wafer gives an instantaneous
snapshot on the 2D surface, d(r, θ) (where r and θ are the traditional
polar coordinates). The effect of rotation is to average out the θ (az-
imuthal) component of the deposition rate to render only a radially-
varying profile, d(r). This was performed as a post-processing step,
by averaging the deposition rate at each of 190 equally-spaced angles
for each of 50 different radii. The resulting radial profiles are shown in
many of the figures in the results section. The quality of a given growth
run is measured by the uniformity of the radial profile. We use two
metrics for uniformity in this paper. The first is the non-uniformity,
defined as

Non-Uniformity = (max [d(r)]−min [d(r)]) /(average [d(r)]). (12)

and usually reported in percent. This is an L∞ norm of the variability
of the profile about. The second metric is the L2 norm of the profile
about its average and is used as an objective function in the optimiza-
tion calculations (see Eq. 13).
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Parameter Description [Units] Min Max Base
Vi Inlet Velocity [cm/sec] 20 50 30
Ω Rotation Rate [RPM] 0 250 100
P Reactor Pressure [atm] 0.1 1.2 0.85
Vp Purge Flow Velocity [cm/sec] 0 100 0
Tt Temperature of Reactor Top [K] 400 800 600
α Slope of TCS Feed Conc. [ ] -1.0 1.0 0.0

Table 1: This table presents the 6 key parameters in this study, along with
their minimum, maximum, and base values. The parameters are described
in Section 2.1.

4 Parameter Continuation Results

In this section we first present the solution at base operating condi-
tions and then the results of 6 parameter studies about that state point.
Optimization results are deferred to the following section. Continua-
tion and optimization are complementary capabilities. Continuation
runs give information on the effects of individual parameters and the
relative sensitivity of the model to each parameter which in turn opti-
mization methods can utilize as approprate initial conditions. Suitable
optimization algorithms can then efficiently find the right combination
of parameters for the best design.

4.1 Solution at Base Conditions

The reactor model presented in section 2 was first solved at the base
conditions for the 6 operating parameters, as presented in Table 1. The
steady solution was reached by a series of steady-state continuation
steps and mesh sequencing as follows: 1) on a relatively coarse mesh,
the fluid flow was solved for at low pressure and at constant tempera-
ture and mass fractions from a trivial initial guess, 2) the pressure was
increased to realistic conditions over a series of steps, 3) the tempera-
ture was raised to realistic conditions over a period of several steps, 4)
the surface reaction was turned on and finally 5) the mesh was refined
by hand in regions of steep gradients, and the solution interpolated to
the finer mesh. This guess was then reconverged on the finer mesh,
which corresponds to 1.3 million unknowns.

A visualization of the three-dimensional solution is given in Figure
3, and shows the large effect of the disk rotation on the streamlines
and on the contours of TCS along the bottom surface (which directly
correspond to the silicon film growth rate). One feature to note is the
peak (in green) of higher deposition toward the far side of the reactor,
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Figure 3: Streamlines through the CVD reactor are shown at the base con-
ditions. The contours of TCS mass fractions, which directly correspond to
the deposition rate, are shown along the bottom surface of the reactor. The
light blue and green are relatively high concentrations, and red contours are
the lowest.

which falls underneath the spiraling streamlines.
A more quantitative result, seen in Figure 4, is the contour plot

of the instantaneous deposition rate along the wafer surface. The ex-
pected result of reactant depletion can be seen, with higher deposition
rates at the leading (left) edge of the wafer and lower rates on the
trailing (right) side. An interesting (and to us, unexpected) feature
was the peak in deposition rate on the upper part of this figure. This
is the part of the disk carrying fluid against main direction of flow
through the reactor, and one might have expected a very low growth
rate with the fluid at this point already having rotated three-quarters
of the way around the reactor and greatly depleting the TCS. Rather,
the source of this peak can be seen in Figure 3, where a recirculation
in the flow is above this part of the disk. The spinning disk below the
recirculation appears to act as a pump, pulling down fresh reactant to
the wafer surface.

The instantaneous deposition over the wafer is averaged with re-
spect to the angle to capture the effects of disk rotation, generating a
radial deposition rate profile. This averaging is justified because the
period of wafer rotation is much shorter then a typical growth run.
This is shown in Figure 5 for a solution at the base conditions, and
exhibits a marked increase in deposition rate at larger radii. The non-
uniformity of growth over the wafer (defined in Eq. 12) is calculated
to be 10.7%, which is well above the desired value of 1%. The inset in
this figure is a mesh resolution study for the number of elements in the
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Figure 4: A contour plot of instantaneous deposition rates on the wafer is
shown, along with straight arrows showing the predominant flow direction
and curved arrows showing the rotation direction. The + symbols mark the
positions of local maximum in the deposition rate and the o symbols mark
minima.
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Figure 5: The averaged deposition rate profile at base conditions, calculated
by averaging out the azimuthal (θ) component from Figure 4, is shown.
Inset: Mesh resolution study with number of elements in Z direction Nz of
24, 32 (bold), 48, and 64.

vertical Z direction. In addition to the mesh with 32 elements in the
Z direction, highly graded towards the bottom, the deposition profile
was calculated for meshes with 24, 48, and 64 elements. Doubling the
mesh in this direction made less then 1% difference in the deposition
rate.

In the following six subsections, the effect of the six parameters
shown in Table 1 on the radial deposition rate profiles and the non-
uniformity are investigated through continuation runs. In each case,
the other 5 parameters are held fixed at the base conditions. The
continuation was automated using the LOCA software.10

4.2 Inlet Velocity, Vi

Parameter continuation on the inlet velocity Vi was performed, and
deposition profiles calculated for velocities (in cm/sec) from 20 to 50
in steps of 5. The deposition profiles in Figure 6 show that the overall
deposition rate increases weakly with increasing flow rate. This trend
is expected since the increase in velocity decreases the boundary layer
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Figure 6: Radial deposition rate profiles of silicon over the wafer calculated
for inlet velocities Vi = 20 → 50 in steps of 5 (Vi = 30 in bold) are shown.

thickness through which the reactant must diffuse to reach the hot
wafer surface. The deposition appears to become more uniform at
lower inlet velocities, an observation that is quantified in Figure 7.
The non-uniformity at higher velocities is due to a growing peak in
the deposition rate at large radii. Visualization of the instantaneous
(2D) deposition contours show an intensification of the peak in the
deposition profile on the part of the disk that is pushing fluid against
the main flow direction. The is attributed to the strengthening of the
recirculating flow that can be seen in Figure 3 and discussed in the
previous section.

4.3 Rotation Rate, Ω

Parameter continuation on the substrate rotation rate Ω was per-
formed, and deposition profiles calculated for rotation rates (in RPM)
from 0 to 250 in steps of 25. (The Ω = 0 solution, which is still av-
eraged over wafer rotation, represents the limit of small rotation rates
which have negligible impact on the convection yet with a period still
much less then a typical growth run.) The deposition profiles in Figure
8 show that a peak in the deposition profile near radius of 7 develops
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Figure 7: Non-uniformity of deposition rate is plotted as a function of Inlet
Velocity (where the square symbol represents base conditions).
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Figure 8: Radial deposition rate profiles of silicon over the wafer calculated
for rotation rates (in RPM) of Ω = 0 → 250 in steps of 25 (Ω = 100 in bold)
are shown.

at higher rotation rates. This peak intensifies with increasing rotation
rate, is the same one discussed in section 4.1 and seen in the instan-
taneous 2D deposition plot in Figure 4. Overall, the deposition rates
increases with rotation rate. The non-uniformity of the deposition rate
is observed in Figure 9 to be a strong function of the rotation rate, and
reaches a minimum of about 4% at Ω = 175.

4.4 Pressure, P

Parameter continuation on the reactor pressure P was performed, and
deposition profiles calculated for operating pressures (in atm) from 0.1
to 1.2 in steps of 0.1. The profiles are shown in Figure 10. Overall, the
deposition rate increases as a strong function of the pressure due to
a direct increase density via the ideal gas law. An increase in density
increases the concentration of the reactant and decreases the boundary
layer thickness through which the reactant must diffuse to reach the
reacting surface. The profiles show deposition at the edge of the wafer
increasing disproportionately to that near the center at high pressures.
This is the same effect as seen when increasing the inlet velocity. This
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Figure 9: Non-uniformity of deposition rate is plotted as a function of rota-
tion rate Ω (where the square symbol represents base conditions).
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Figure 10: Radial deposition rate profiles of silicon over the wafer calculated
for reactor pressures P = 0.1 → 1.2 in steps of 0.1 are shown.

is expected since the development of the recirculation is a function of
the Reynolds number, which is proportional to both the velocity and
density. The non-uniformity of the deposition rate is seen in Figure
11 to be a nonlinear function of the pressure, reaching a minimum of
about 5% at P = 0.5 while reaching over 30% at P = 1.2.

4.5 Purge Flow Velocity, Vp

Parameter continuation on the purge flow velocity Vp was performed,
and deposition profiles calculated for velocities from 0 to 100 in steps of
10. (The purge flow is the pure H2 gas pumped into the reactor in the
small gap between the rotating substrate and the fixed reactor, and
prevents diffusion of reactants and subsequent deposition on reactor
parts under the substrate.) The deposition profiles in Figure 12 show
that a strong purge flow decreases the overall deposition rate, presum-
ably by diluting the reactants. There is also strong decrease at the edge
of the wafer, which is likely due to the creation of a boundary layer of
pure H2 through which reactants must diffuse. The non-uniformity of
the deposition rate is seen in Figure 13 to be a strong function of the
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Figure 11: Non-uniformity of deposition rate is plotted as a function of
operating pressure P (where the square symbol represents base conditions).
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Figure 12: Radial deposition rate profiles of silicon over the wafer calculated
for purge flow velocities (in cm/sec) of Vp = 0 → 100 in steps of 10 (Vp = 0
in bold) are shown.

purge velocity and reaches a minimum of about 7% at P = 80. The
discontinuity in slope of this curve at Vp = 80 is an expected feature
of an L∞ norm (see Eq. 12), since position of the minimum deposition
rate jumps from a radius of near 5 to 10.

4.6 Temperature of Reactor Top, Tt

Parameter continuation on the temperature of the reactor top Tt was
performed, and deposition profiles calculated for temperatures from
400 to 800 in steps of 50. The temperature at the top of the reactor
is not typically independently controlled nor a constant, yet the re-
sult of a balance between radiation, conduction, and convection, and
so a function of many design and operating parameters. This study
is in part a sensitivity analysis with respect to an unknown quantity,
yet the results can also guide reactor design and operation which can
alter this temperature in practice. The deposition profiles in Figure
14 show that an increase in the reactor top temperature increases the
overall deposition rate. We believe this is primarily due to a decrease
in thermal diffusion (the Soret effect) when there is a decrease in the
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Figure 13: Non-uniformity of deposition rate is plotted as a function of
velocity of the purge flow Vp (where the square symbol represents base con-
ditions).
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Figure 14: Radial deposition rate profiles of silicon over the wafer calculated
for reactor top temperatures (in cm/sec) of Tt = 400 → 800 in steps of 50
(Tt = 600 in bold) are shown. The profile for Tt = 600 with thermal diffusion
turned off is marked with symbols.

temperature gradient normal to the reacting surface. This assertion is
supported by the deposition profile for Tt = 600 with thermal diffu-
sion turned off in the model, shown with symbols in the same figure.
A higher temperature at the top of the reactor also increases deposi-
tion due to an increase in overall flow velocity, thereby decreasing the
boundary layer thickness, and an increase in molecular diffusion to the
surface. The non-uniformity of the deposition rate is seen in Figure
15 to be a relatively strong, monotonically decreasing, function of the
temperature.

4.7 Slope of TCS Feed Profile, α

Parameter continuation was performed on the slope of the feed concen-
tration of the reactant TCS, α, defined in Eq. 9. Deposition profiles
were calculated for slopes from −0.9 to 0.9. The dependence is not
symmetrical in α becaus the substrate rotation breaks the symmetry
of the reactor model about the y = 0 mid-plane. As described in
Section 2, this parameter is a first order attempt to represent the flex-
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Figure 15: Non-uniformity of deposition rate is plotted as a function of
the Temperature of the top of the reactor, Tt (where the square symbol
represents base conditions).
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ibility in the spatial distribution of reactant feed concentrations. The
deposition profiles in Figure 16 show that a shape of the deposition
profile is a strong function of this parameter. The non-uniformity of
the deposition rate is seen in Figure 17 to have a minimum near 4%
at α = 0.7, and another local minimum near α = −0.1. It is critical to
know that the non-uniformity can have multiple minima for performing
the optimization calculation.

5 Optimization Results

The parameter studies presented in the previous section show that the
non-uniformity of silicon deposition over the wafer is highly dependent
on all 6 of these parameters. Four of the continuation runs showed
minimum values on the interior of the parameter range. However the
lowest value of the non-uniformity achieved by varying 1 parameter at
a time was 4% (for Ω = 175) which is well above the 1% design goal.

To take advantage of the computational efficiency of gradient-based
optimization algorithms, the L2 norm of the radial deposition profile
about its average was used. The non-uniformity used in the previous
plots, while being a more intuitive metric, is a L∞ norm which can have
discontinuous derivatives and therefore not suitable for gradient based
methods. The objective function was calculated numerically from the
deposition radial profiles as follow:

ObjFn =
(

1
A

∫
(
d(r)
d̄

− 1)2rdr

)1/2

(13)

where A is the wafer area, d(r) is the radial deposition profile, and
d̄ is the average of the profile, pre-calculated by integrating d(r). The
results of the six parameter runs are re-plotted with this objective
function in Figure 18. The parameter ranges of the X-axis are kept
the same as in the previous plots. It can be seen that this objective
function closely tracks the non-uniformity metric used above yet is
more smoothly varying, with a minimum value of ObjFn = 0.013
corresponding approximately to 4% non-uniformity.

Four optimization calculations were performed for this reactor using
the BFGS SQP algorithm and finite-differenced gradients. The results
are summarized in Table 2, and show the minimum objective function
(L2 norm) as well as the corresponding non-uniformity (L∞ norm). In
all cases, the parameters not being optimized were held at the base
conditions in Table 1.

The first two were verification runs, each varying only one parame-
ter, so that the results could be compared with the continuation runs.
The first one changed the rotation rate parameter Ω and the second
changed the Pressure P . Each produced results consistent with the
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Figure 16: Radial deposition rate profiles of silicon over the wafer calculated
for the slope of the TCS feed concentration of α = −0.9 → 0.9 in steps of
0.2 (with additionally α = 0 in bold), and with dashed curves for α < 0, are
shown.
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Figure 17: Non-uniformity of deposition rate is plotted as a function of the
slope of the TCS feed concentration α (where the square symbol represents
base conditions).

Parameter(s) Varied Final Value(s) Non-Uniformity ObjFn

Ω (176.1) 3.98% 0.0136
P (0.491) 5.23% 0.0129

Vi, Ω, P (37.0, 207.6, 0.608) 0.99% 0.00195
Vi, Ω, P , (21.4, 170.3, 0.327,
Vp, Tt, α 79.2, 799., -0.070) 0.10% 0.000192

Table 2: This table summarizes the results of 4 different optimization runs.
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Figure 18: The results of the 6 parameter studies in the previous section
are re-plotted using the L2 norm of the variation in the radial deposition
profile (see Eq. 13) as a measure of non-uniformity instead of the L∞ norm
(in Eq. 12). This metric, though less intuitive, has continuous derivatives
which makes it more amenable to gradient-based optimization algorithms.
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Figure 19: The path of two of the parameters during the 3-parameter opti-
mization run (Vi not shown) is shown. The initial guess and optimal values
are labelled. The individual solutions are marked with + and solutions that
are part of a line search are connected with a line.

results of the continuation runs, as read from the curves in Figures 9
and 11.

The third run varied the first 3 parameters in Table 1, the Inlet
Velocity Vi, the Rotation Rate Ω, and the Pressure P . Of all the pa-
rameters considered in this study, these three are most conducive to
adjustments by a reactor operator. This run converged in 20 iterations
of the BFGS SQP algorithm. The MPSalsa code was launched 143
times, 60 of which were for numerical gradient calculations (3 param-
eters × 20 iterations) and the remaining 83 for the line searches. The
steady-state calculations took an average of 4.6 Newton iterations to
converge, with a maximum of 9. The total compute time was approx-
imately 50 hours on 200 processors. Figure 19 shows the migration
of the Ω and P parameters throughout the run. About 13 of the line
searches can be visually distinguished on this plot.

The final run was on all 6 parameters in this study and achieved
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Figure 20: Radial deposition profiles for the optimum solution for each of
four different optimization runs are shown. The profiles are labelled with
the parameter(s) allowed to vary in the optimization run. The objective
function for the runs was the L2 norm of the variation of these profiles (see
Eq. 13).

the largest reduction in the objective function. The objective function
dropped 1 order of magnitude from the 1-parameter runs to the 3-
parameter run, and an additional order of magnitude in the 6-parameter
run. The non-uniformities dropped from 3.98% for optimization on Ω,
to 0.99% for the 3-parameter run, to 0.10% in the 6-parameter study.
The radial profiles for the optimal solution found in each of the four
runs is shown in Figure 20. The improvement in uniformity with in-
creasing numbers of optimization parameters can be clearly seen. An-
other interesting feature is that the average deposition rate, which does
not appear in the objective function, varies significantly between the
runs.

The instantaneous deposition for the 6-parameter optimum is shown
in Figure 21. (After averaging out the effects of rotation, this profile
produces the flat profile in Figure 20.) The maximum deposition rate is
about 2.5 times that of the minimum, so the profile is not flat; however,
a linear variation diagonally across the disk is nearly achieved.
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Figure 21: Contours of the instantaneous deposition profile for the optimal
solutions found in the 6-parameter run are shown. The + marks the position
of the maximum deposition rate and the o marks the minimum.
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We have no reason to expect that the optimum for the 3-parameter
and 6-parameter runs are global optima, as opposed to just local min-
ima. We know that local minima can exist from the continuation run
on α, which shows two distinct minima in Figure 18. In addition, the
final values of Vp and Tt in the 6-parameter run are very close to their
initial values of 80 and 800, with much of the parameter space not
being explored.

Although the present model is not predictive, we believe that the
optimization problem presented here is of the same complexity as one
for a model with improved chemistry mechanisms and geometric de-
tail. Therefore, the fact that the non-uniformity can be driven so low
is an important finding, even if this locally optimal solution is not the
global optimum. Since the 0.10% non-uniformity far exceeds a typical
design goal of 1% for this process, the local optimum would likely be
good enough. If further examination found multiple regions in param-
eter space with very low non-uniformities, a more intricate objective
function could be formulated to further distinguish them. For instance,
the objective function could include not only non-uniformity but also
secondary economic factors such as reactant utilization, or even the
sensitivity of the non-uniformity to expected variations in the param-
eters.

The more general result, that falls within the scope of this work,
is that optimization of 3D models of the CVD process can be robustly
performed on a handful of parameters, and that non-uniformities can
be driven low enough that secondary effects can be incorporated into
the objective function. Choosing the form of the objective function
to accurately weigh design trade-offs is the work of a reactor designer.
The calculations here show that the development of robust solution
and optimization algorithms can lead to the state where an entire op-
timization run can replace a single solution as the basic computational
unit in the design process.

6 Summary and Conclusions

A 3D model for the growth of epitaxial silicon films in a horizontal CVD
reactor was presented and solved. The model includes a fully coupled
PDE model for flow, heat transfer, and mass transfer in the reactor
and a simple deposition model on the rotating susceptor surface. An
unstructured grid finite element method enabled the representation of
the inlet and outlet regions, the rotating susceptor and wafer regions,
and the small gap between the rotating and fixed parts of the reac-
tor. The model includes the dependency of the physical and transport
properties on the local temperature and composition, including the
non-negligible effect of thermal diffusion (the Soret effect). The most
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serious shortcomings of our current model are the exceedingly simpli-
fied chemistry mechanism and the lack of a model for heat transfer
in and between (via conduction and radiation) the solid surfaces that
bound the reactor.

The individual effects of 6 operating parameters on the spatial
uniformity of deposition were uncovered with parameter continuation
runs. The pressure and susceptor rotation rate were found to have
particularly large and nonlinear effects. A large flow rate of purge gas
through the gap between the rotating and fixed parts of the reactor
was found to greatly decrease the deposition rate near the edge of the
wafer, in part counteracting the effect of reactant depletion that puts
a peak at the wafer edge. Optimization runs on 1, 3, and 6 parame-
ters produced conditions where the predicted deposition profiles had
non-uniformities of 4%, 1%, and a very low 0.10%. These results are
visualized in Figure 20, the key figure of this paper.

The automated parameter studies and optimization runs were made
possible by the rapid and reliable numerical methods for the solution
of coupled PDEs on parallel computers. A typical calculation for our
1.3 Million unknown model, starting with a previous solution at nearby
parameters as an initial guess, required just 20 minutes on a 200 pro-
cessor machine (and 90 minutes on a more accessible 24 node LINUX
cluster). On the order of 1000 steady state calculations were performed
on this model in less then a month. This represents a significant step in
a goal of research into solution and analysis algorithms for 3D models,
which is to make these computations efficient and informative enough
to become an integral part of the design cycle.
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